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Abstract

Bootstrap methods are useful even if the data on hand are strongly de-
pendent, especially in case of time series. Using the results of [1], we
managed to prove that the multiplier (weighted) bootstrap quasi max-
imum likelihood estimation of the parameters of GARCH(p,q)pro-
cesses is strongly consistent and the estimate’s limit distribution is
Gaussian. We assume that the weights are independent from the pro-
cess, they are positive with probability one, there exists their first two
moments and the correlation between them is weak. We examined the
practical consequences of the theorem, the covariance matrix of the
limit distribution and the rate of convergence via simulations.

Introduction - GARCH models

Definition 1 (Xt)t∈Z is called a GARCH(p,q) process if

Xt =
√

htηt (1)

ht = ω0 +

q
∑

i=1

α0iX
2
t−i +

p
∑

j=1

β0jht−j (2)

whereηt (t ∈ Z) are i.i.d. (0,1) random variables,ω0 > 0, α0i ≥
0, β0j ≥ 0 for i = 1, ..., q and forj = 1, ..., p.

We denote the parameter vector byθ = (θ1, ..., θp+q+1)
T =

(ω, α1, ..., αq, β1, ..., βp)
T , which belongs to the parameter spaceΘ =

(0,∞)× [0,∞)p+q.
The true value of the parameters,θ0 = (ω0, α01, ..., α0q, β01, ..., β0p)

T

is unknown.
The following two theorems are fundamental in the theory of GARCH
processes.

Theorem 1([1], page 37) If there exists a GARCH(p,q) process (1) -
(2), which is second-order stationary, and ifω > 0, then

q
∑

i=1

αi +

p
∑

j=1

βj < 1.

If (1) holds, the unique strictly stationary solution of model (1) - (2) is
a weak white noise.

The GARCH(p,q) process can be written in vector representation

zt = bt +Atzt−1 t ∈ Z.

Theorem 2Let γ denote the top Ljapunov exponent of the matrix se-
quence(At)t∈Z.
Thenγ < 0 if and only if there exists a strictly stationary solution of
the GARCH(p,q) model.

QML estimation of GARCH parameters

Assume that{x1, . . . , xn} are observations from a GARCH(p,q) pro-
cess (strictly stationary solution of the model). The Gaussian quasi-
likelihood function, conditional on thex1−q, ..., x0, σ̃

2
1−p, ..., σ̃

2
0 initial

values, is

Ln(θ) = Ln(θ; x1, ..., xn) =

n
∏

i=1

1
√

2πσ̃2t

e
− x2t

2σ̃2t

where the(σ̃2t )t≥1 are recursively defined with the following:

σ̃2t = σ̃2t (θ) = ω +

q
∑

i=1

αix
2
t−i +

p
∑

j=1

βjσ̃
2
t−j(θ)

The QMLE ofθ is defined as the solution̂θn of

θ̂n = argmax
θ∈Θ

Ln(θ) (3)

To maximize the Gaussian likelihood function, we have to minimize
the following function:

In(θ) =
1

n

n
∑

t=1

lt(θ), where lt(θ) =
x2t

σ̃2t (θ)
+ log(σ̃2t (θ)).

LetAθ(z) andBθ(z) be the generating functions

Aθ(z) =

q
∑

i=1

αiz
i and Bθ(z) = 1−

p
∑

j=1

βjz
j

The following conditions are sufficient for the quasi-maximum likeli-
hood estimator to have a normal limit distribution (see [1]).
Assumptions
A1. θ0 ∈ Θ andΘ is compact

A2. γ(A0) < 0 and for allθ ∈ Θ,
p
∑

j=1
βj < 1

A3. η2t has a nondegenerate distribution andEη2t = 1

A4. If p > 0,Aθ0(z) andBθ0(z) have no common roots,
Aθ0(1) 6= 0, α0q + β0p 6= 0

A5. θ0 ∈ int(Θ)

A6. κη = Eη4t < ∞
Theorem 3Let (θ̂n)n≥1 be a sequence of QMLEs satisfying (3), with
initial conditions

x21−q = ... = x20 = x1 σ̃20 = ... = σ̃21−p = x21 (4)

Under assumptionsA1-A4

θ̂n
a.s.−−−−→

n→∞ θ0

Theorem 4Under assumptionsA1-A6

√
n(θ̂n − θ0)

d−−−−→
n→∞ N (0, (κη − 1)J−1)

where

J := Eθ0

(

∂2lt(θ0)

∂θ∂θT

)

= Eθ0

(

1

σ4t (θ0)

∂σ2t (θ0)

∂θ

∂σ2t (θ0)

∂θT

)

(5)

With different assumptions, theorem 3 was first proved by [2]in 2003.
Theorem 4 was proved by [2], and also by [3], who generalized the
result to the caseEη4t = ∞.

Bootstrap QML estimation of GARCH parameters

We define the bootstrap weights asτni (1 ≤ i ≤ n, n ≥ 1) triangular
random variables independent from the process

τ11
τ21 τ22
... ... . . .

τn1 τn2 . . . τnn
... ... . . .

Assumptions for the weights

B1. the weights are independent from the GARCH process

B2. P (τni ≥ 0) = 1 1 ≤ i ≤ n, n ≥ 1

B3. for all n, the first two moments ofτn1, . . . , τnn are finite and equal

B4. lim
n→∞Eτni = 1 i = 1, 2, ...

B5. γ := lim
n→∞Eτ2ni < ∞ i = 1, 2, ...

B6. rn = R(τni, τnj) −−−−→
n→∞ 0 if i 6= j

The multinomial distribution is suitable choice for weights, it satisfies
the three assumptions above.
Suitable choices for the weights:

(τn1, ..., τnn) ∼ Multinom

(

n;
1

n
, ...,

1

n

)

(τn1, ..., τnn) ∼ i.i.d. Exp(1)

(τn1, ..., τnn) ∼ i.i.d. Γ(n, n)

Now we modify the Gaussian likelihood function with the bootstrap
weights, we have to minimize the following function:

I∗n(θ) =
1

n

n
∑

t=1

l∗nt(θ), where l∗nt(θ) = τnt

(

x2t
σ̃2t (θ)

+ log(σ̃2t (θ))

)

For example if the weights are(1, 2, 0, 1, ..., 1) then the second element
of the sample is taken twice but the third one is missed.
The bootstrap QMLE of the parameterθ is defined as the solution̂θ∗n
of

θ̂∗n = argmax
θ∈Θ

I∗n(θ) (6)

Theorem 5Let (θ̂∗n)n≥1 be a sequence of bootstrap QMLEs satisfying
(6), with initial conditions (4). Under assumptionsA1-A4 andB1-B4

θ̂∗n
a.s.−−−−→

n→∞ θ0

Theorem 6Under assumptionsA1-A6 andB1-B6

√
n(θ̂∗n − θ0)

d−−−−→
n→∞ N

(

0, γ(κη − 1)J−1
)

(7)

whereJ is defined as in (5).

In our proof of theorems 5 and 6 we followed the methods of [1].

Simulations

The covariance matrix(κη − 1)J−1 of the limit distribution depends
on the true parameters. We analyzed this dependence in stationary
ARCH(1) processes, where the parameters areω0 > 0 and0 < α0 < 1.

FIGURE 1: Contours of the elements of the limiting covariance
matrix, ARCH(1) process

The variance of the estimated parameterα̂ does not seem to depend on
the true parameter value omega. This is not trivial from the theoretical
results and needs further investigation.
From now on we will concentrate on the ARCH(1) process with pa-
rametersω0 = 1 andα0 = 0.5. Then the limiting covariance matrix of
the QML estimation is

(

4, 893 −2, 148
−2, 148 3, 926

)

.

We drew106 samples (with Gaussian innovations) of size 100 to 5000
and calculated the covariance matrix of the QML estimations.

FIGURE 2: Convergence of the sample covariance matrix,
ARCH(1) process,ω0 = 1 andα0 = 0.5

Figure 2 displays that the rate of convergence drastically improves until
the sample size is under 1000 and just slightly after that.
The simulational experiences show that we must generate at least5·105
samples to properly estimate the covariance matrix, which takes a lot
of time for the computer. Even the bootstrap can’t help much if we
draw too few samples as can be seen on Figure 3.

FIGURE 3: Convergence of the sample covariance matrix,
ARCH(1) process,ω0 = 1 andα0 = 0.5, B=100 bootstrap repli-
cations

We drew 104 samples and these were bootstrapped 100 times with
multinomial weights (soγ = 2). The dotted lines are the sample co-
variance matrix values without bootstrap weights, dividedby the theo-
retical values and scaled to 2.
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