Abstract

Bootstrap methods are useful even if the data on hand amgstrde-
pendent, especially in case of time series. Using the eeliftl], we
managed to prove that the multiplier (weighted) bootstragsgmax-
Imum likelihood estimation of the parameters of GARCH(ppnno-
cesses Is strongly consistent and the estimate’s limitiloligton Is
Gaussian. We assume that the weights are independent feoprdh
cess, they are positive with probability one, there exis¢srtfirst two
moments and the correlation between them is weak. We exdrtiiee
practical consequences of the theorem, the covariancexnwditthe
limit distribution and the rate of convergence via simuas.

Introduction - GARCH models

Definition 1 (X;);c7 is called a GARCH(p,q) process if
Xt =/ hing (1)
q

p
he =wo+ Y agiXi i+ Y Bojhij (2)
i=1 j=1

wheren; (t € 7Z) are i.i.d. (0,1) random variablesy; > 0, ap; >
0,8p; > 0fore=1,...,qandfory =1, ..., p.

We denote the parameter vector By = (64, ...,9p+q+1)T
(w, o, ..., ag, B1, ..., ﬁp)T, which belongs to the parameter spate-
(0,00) x [0, 00)P T4,

The true value of the parameteég, = (wp, a1, .., g, 801, -+ Bop)’
IS unknown.

The following two theorems are fundamental in the theory AREH
processes.

Theorem 1([1], page 37) If there exists a GARCHI§) process (1) -
(2), which is second-order stationary, anduif> 0, then

q p
Z o + Z B < 1.
i—1 =1

If (1) holds, the unigue strictly stationary solution of nebdl) - (2) is
a weak white noise.

The GARCH¢,q) process can be written in vector representation

2t = bt + Atgt_l t e /.

Theorem 2Let v denote the top Ljapunov exponent of the matrix sg-

quence(A¢);ez.
Then~ < 0 if and only if there exists a strictly stationary solution o

the GARCHyg,q) model.

QML estimation of GARCH parameters

Assume thafz, ..., z,} are observations from a GARCH(p,q) pro
cess (strictly stationary solution of the model). The Gaussguasi-
likelihood function, conditional on the;_, ..., z, 5%_]0, e 68 initial

values, iIs

Ln(@) — Ln(07 xl, ceey xn) — H 25152

1 _
e
i=114/ 27T(~7?52

where the(57),~1 are recursively defined with the following:

The QMLE of# is defined as the solutiah, of

0, = argmaxLy,(0)
0cO

To maximize the Gaussian likelihood function, we have toimine
the following function:

2

1 T
I(6) = — > 11(6), where [;(6) = = (te)
t=1 t

Let Ay(z) andBy(z) be the generating functions

+ log(67(0)).

q D
AQ(Z> = Z Oé,L'Zi and BQ<Z) =1 Zﬂjzj
1=1 J=1
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The following conditions are sufficient for the quasi-mamn likeli-
hood estimator to have a normal limit distribution (see.[1])
Assumptions

Al. 0y € © andO is compact

p
A2. v(Ap) <Oandforalld € ©, ) B; <1
j=1

A3. 77 has a nondegenerate distribution dfgf = 1

Ad. If p >0, Ay (2) andBy (z) have no common roots,
AQO(I) # 0, Qg + BOp # 0

A5. ) € int(O)

AB. Ky = EngL < 00

AN

Theorem 3Let (0,,),~1 be a sequence of QMLEs satisfying (3), wit
Initial conditions

R S

—q

Under assumptiond1-A4

A a.s.
LN
n—oo

Theorem 4Under assumptiond1-A6

V(0 — 00) —— N(0, () — 1))

n—od

- (92175((90) B 1 80?(90) 30?(90)
=B ( 00067 ) = by <g4(eo) 00 90T ®)

where

t

With different assumptions, theorem 3 was first proved byrfZ1003.
Theorem 4 was proved by [2], and also by [3], who generalibed
result to the cas&r; = co.

Bootstrap QML estimation of GARCH parameters

We define the bootstrap weightsas (1 < ¢ < n, n > 1) triangular
random variables independent from the process

T11
21 T22

Assumptions for the weights

B1l. the weights are independent from the GARCH process
B2. P(1,,>0)=1 1<i<n,n>1
B3. for all n, the first two moments af,,1, . .
B4, lm E7,;,=1 1=1,2,...

n—od

., Tnn are finite and equal

B5. v := lim E72. < o0

m BT, 1 =1,2, ...

B6. T'n = R(Tni, 7_77,]) m 0 If 2 #]

The multinomial distribution is suitable choice for weightt satisfies
the three assumptions above.

Suitable choices for the weights:

. 1 1
(Tnls - Tnn) ~ Multinom (n; —, ...,—)
n n

(Tl s Tnn) ~ 1.1.d. Exp(1)
(T oo Tan) ~ L1.A. T'(n,n)

Now we modify the Gaussian likelihood function with the bsicdp
weights, we have to minimize the following function:

9
Ly

1 n
[>I< _ * h * _

For example if the weights afe, 2.0, 1, ..., 1) then the second element
of the sample Is taken twice but the third one is missed. A
The bootstrap QMLE of the parameters defined as the solutioff,

of

+ log (57 (9))>

0 = argmaxl*(0) (6)
0coO

AN

Theorem 5Let (0;),,>1 be a sequence of bootstrap QMLESs satisfying
(6), with initial conditions (4). Under assumptioAd-A4 andB1-B4

A a.s.
or L5 0,
n—oo

Theorem 6Under assumptiond1-A6 andB1-B6

V0 = 80) —— N (0,905 — 1)) (7)

n—oo

whereJ is defined as in (5).
In our proof of theorems 5 and 6 we followed the methods of [1].

Simulations

The covariance matrixs, — 1)J~1 of the limit distribution depends
on the true parameters. We analyzed this dependence inrstati
ARCH(1) processes, where the parameterssare 0 and0 < o < 1.
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FIGURE 1. Contours of the elements of the limiting covariance
matrix, ARCH(1) process

The variance of the estimated parameteloes not seem to depend o
the true parameter value omega. This is not trivial from bestetical
results and needs further investigation.

From now on we will concentrate on the ARCH(1) process with p
rametersvy = 1 andag = 0.5. Then the limiting covariance matrix of
the QML estimation is

4,893 —2,148

—2,148 3,926 )
We drew10% samples (with Gaussian innovations) of size 100 to 50§0
and calculated the covariance matrix of the QML estimations
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FIGURE 2. Convergence of the sample covariance matrix,
ARCH(1) processyy = 1 andag = 0.5

Figure 2 displays that the rate of convergence drastiaalproves until
the sample size is under 1000 and just slightly after that.

The simulational experiences show that we must generatasts| 10°
samples to properly estimate the covariance matrix, wkakhdg a lot
of time for the computer. Even the bootstrap can’t help miiche
draw too few samples as can be seen on Figure 3.
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FIGURE 3. Convergence of the sample covariance matrix,
ARCH(1) processyy = 1 andag = 0.5, B=100 bootstrap repli-
cations

We drew 10* samples and these were bootstrapped 100 times with
multinomial weights (sey = 2). The dotted lines are the sample co
variance matrix values without bootstrap weights, dividgdhe theo-
retical values and scaled to 2.
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