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0 Copulas

e Bootstrap methods for Goodness-of-fit tests
@ GoF tests in general
@ Empirical copula process, limit distribution
@ CvM tests based on Kendall’s process

e Analysis of stock index data

e Final remarks
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@ Cis acopula, if it is a d-dimensional random vector with marginals
~ Unif[0,1]
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@ Cis acopula, if it is a d-dimensional random vector with marginals
~ Unif[0,1]

@ Existence (Sklar's Theorem): to any d-dimensional random
variable X with c.d.f. F and marginals F; (i=1,...,d) there exists a
copula C : F(x1,...,xq) = C(F1(x1), ..., Fa(Xq))

@ Uniqueness: if F; are continuous (i=1,...,d)

@ Separation of the marginal model and the dependence
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@ Existence (Sklar's Theorem): to any d-dimensional random
variable X with c.d.f. F and marginals F; (i=1,...,d) there exists a
copula C : F(x1,...,xq) = C(F1(x1), ..., Fa(Xq))

@ Uniqueness: if F; are continuous (i=1,...,d)

@ Separation of the marginal model and the dependence

Archimedean copulas
@ Copula generator function: ¢ : [0, 1] — [0, ]
where ¢ is continuous, strictly decreasing and ¢(1)=0

d
@ d-variate Archimedean copula: Cy(u) = ¢~ <Z ¢>(u,-)>
i=1
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@ Cis acopula, if it is a d-dimensional random vector with marginals
~ Unif[0,1]

@ Existence (Sklar's Theorem): to any d-dimensional random
variable X with c.d.f. F and marginals F; (i=1,...,d) there exists a
copula C : F(x1,...,xq) = C(F1(x1), ..., Fa(Xq))

@ Uniqueness: if F; are continuous (i=1,...,d)

@ Separation of the marginal model and the dependence

Archimedean copulas
@ Copula generator function: ¢ : [0, 1] — [0, ]
where ¢ is continuous, strictly decreasing and ¢(1)=0

d
@ d-variate Archimedean copula: Cy(u) = ¢~ <Z ¢>(u,-)>
i=1

@ Gumbel: ¢(u) = (—log(u))? where 6 € [1, 0]
@ Clayton: ¢(u) = u=? — 1 where > 0
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Copulas - examples

Simulation from Gumbel copula Simulation from Clayton copula
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e Bootstrap methods for Goodness-of-fit tests
@ GoF tests in general
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Goodness-of-fit (GoF) tests in general

@ Let Xi,..., X, be random vectors, with c.d.f. F: RY — R

@ We want to test the following hypothesis:
Hy: Fe F={Fy:0 € ©} where © C RP is an open set
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Goodness-of-fit (GoF) tests in general

@ Let Xj,..., X, be random vectors, with c.d.f. F: R - R

@ We want to test the following hypothesis:
Hy: Fe F={Fy:0 € ©} where © C RP is an open set

@ Estimate of the parameter: 6, = To(Xi,..., Xn)
@ Cramér-von Mises statistics based on the empirical process or its
functional
Gﬁ:\/ﬁ(Fn—Fen)
Sn = ¢(Gf)

@ Problem: the asymptotic null distribution of S, is rarely known, but
if known, usually it is rather complicated
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Goodness-of-fit (GoF) tests in general

@ Solution: parametric bootstrap - generation of N bootstrap
repetitions: (k€ 1,...,N)
@ Estimate of the parameter: 6,
@ Generate n independent observations from distribution Fy,:
Xikors Xk
© Estimate the parameter and the empirical c.d.f. from the sample:
Ok = Ta(X{ ks s Xok)

n
Frk(x) = : 2% I(X7 < X)
=
Q Gy = Vn(F;x— Fa:,)
S;;,k = ¢(G;k)
© Calculate the test statistics and the critical values
@ Instead of Fy an abstract quantity Ay depending on Py
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Goodness-of-fit (GoF) tests in general

@ Solution: parametric bootstrap - generation of N bootstrap
repetitions: (k€ 1,...,N)
@ Estimate of the parameter: 6,
@ Generate n independent observations from distribution Fy,:

Xikors Xk
© Estimate the parameter and the empirical c.d.f. from the sample:
Ok = Ta(X{ ks s Xok)

n
Frk(x) = : Z;H(Xifk <X)
1=

Q Gy = Vn(F;x— Fa:,)
S;;,k = ¢(G;k)
© Calculate the test statistics and the critical values
@ Instead of Fy an abstract quantity Ay depending on Py

@ Let’s suppose that ¢, = /n(6, — ) ~ ® and
Ap=+n(A,— A) ~ A
@ For the convergence of the bootstrap alteregos we need further
regularity assumptions.

7/24
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GoF tests - regularity assumptions

@ Def.: AP = {6 € ©} is said to belong to the class S(\) (given A
reference measure), if
@ The measure Py is abs. continuous with respect to A for all § € ©.
@ The density py = dPy/d\ admits first and second order derivatives
with respect to § € ©. Gradient vector: py, Hessian matrix: py
© For arbitrary u € RY and every 6 € ©, the mappings
6 — po(U)/pe(u) and 8 — py(u)/py(u) are continuous at 6y, Py,-a.s.
© For every 6, € ©, there exist a neighborhood N of 6y and a
M-integrable function h: RY — R such that for all u € RY,
SUPye | 1Bo ()| = h(u).
@ For every 6, € ©, there exist a neighborhood N of #y and
P, -integrable functions hy, h, : RY — R such that for every u € RY,

Po(u) (|2 Po(u)
ggﬁllpe(u)ll < hy(u) and ggffllpe(u) | < ho(u).
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GoF tests - regularity assumptions

@ Def.: AP = {6 € ©} is said to belong to the class S(\) (given A
reference measure), if
@ The measure Py is abs. continuous with respect to A for all § € ©.
@ The density py = dPy/d\ admits first and second order derivatives
with respect to § € ©. Gradient vector: py, Hessian matrix: py
© For arbitrary u € RY and every 6 € ©, the mappings
6 — po(U)/pe(u) and 8 — py(u)/py(u) are continuous at 6y, Py,-a.s.
© For every 6, € ©, there exist a neighborhood N of 6y and a
M-integrable function h: RY — R such that for all u € RY,
SUPye | 1Bo ()| = h(u).
@ For every 6, € ©, there exist a neighborhood N of #y and
P, -integrable functions hy, h, : RY — R such that for every u € RY,

Po(u) (|2 Po(u)
ggﬁllpe(u)ll < hy(u) and ggffllpe(u) | < ho(u).

@ Coroll.: Let P € S()), if P € P and n — oo then

—1/2 %= PT(X)
WP,H =n I._Z1 W ~ WP ~ N(O, IP)

where Ip: Fisher information matrix
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Convergence of bootstrap alteregos

@ Def.. Let Uy, ..., Uy be a random sample from P = Py,.
A sequence Ay is said to be Py,-regular for A = Ay, if the process
(An,Wp ) ~ (A, Wp) and A(t) = E(A(t)W]) for every t.
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Convergence of bootstrap alteregos

@ Def.. Let Uy, ..., Uy be a random sample from P = Py,.
A sequence Aj is said to be Py, -regular for A = Ay, if the process
(An, Wp ) ~ (A, Wp) and A(t) = E(A(t)W}]) for every t.

@ Def.: The A, sequence is said to be P-regular for A
(A = {Aq, : 0g € O}) ifitis Py -regular at all A= Ag,.
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Convergence of bootstrap alteregos

@ Def.. Let Uy, ..., Uy be a random sample from P = Py,.
A sequence Aj is said to be Py, -regular for A = Ay, if the process
(An, Wp ) ~ (A, Wp) and A(t) = E(A(t)W}]) for every t.
@ Def.: The A, sequence is said to be P-regular for A
(A = {Aq, : 0g € O}) ifitis Py -regular at all A= Ag,.
@ Theorem: Assume that
e PeS(N)
e if PePand n— oo, (Ap, ®,) ~ (A, d), where the limit is a
centered Gaussian process
o (An,0y) is P-regular for A x ©
Then (GA,GA") ~ (GA,G*)
where G#" is an independent copy of GA.
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Convergence of bootstrap alteregos

@ Def.. Let Uy, ..., Uy be a random sample from P = Py,.
A sequence Aj is said to be Py, -regular for A = Ay, if the process
(An, Wp ) ~ (A, Wp) and A(t) = E(A(t)W}]) for every t.
@ Def.: The A, sequence is said to be P-regular for A
(A ={Ag, : 00 € ©}) ifitis Py,-regular at all A = Ag,.
@ Theorem: Assume that
e PeS(N)
e if PP and n— oo, (Ap, ®5) ~ (A, @), where the limit is a
centered Gaussian process
o (An,0y) is P-regular for A x ©
Then (GA,GA") ~ (GA,G*)
where G*" is an independent copy of GA.
@ Prop.: The assumptions hold for the empirical copula process

(Genest&Rémillard (2005))
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e Bootstrap methods for Goodness-of-fit tests

@ Empirical copula process, limit distribution
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Limit distribution of the empirical copula process

@ Let Xi,..., X, be i.i.d. bivariate random vectors with continuous
c.d.f. F, marginal distribution functions Fy, F» and copula C:

C(uq,u2) = F(F; (uy), F5 (u2)) (Sklar’s theorem)
@ Empirical copula:
Cn(un, u2) = Fp(Fy (), Fa(U2)),
n
where Fp(x) = Fp(x1,%2) = 2 3" I{Xi1 < X1, Xi2 < X2},
i=1
n
=

@ ~ denote weak convergence in space /°°([0, 1]?) of all uniformly
bounded functions on [0, 1]?
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The limit distribution of the empirical copula process

and the pdm method

@ Theorem: If the copula C possesses continuous partial derivatives
01C,d,C on [0, 1]? then the empirical copula process converges
weakly:

Qp = \/E(Cn — C) ~ GC
o where Ge(uy, ) =
Be(uy, uz) — 01C(uy, U2)Be(uy, 1) — 02C(uy, Uz)Be(1, Uz)

e where B¢ is a centered Gaussian field with the following covariance
structure:

COV(Bc(U1, U2), BC(Vh V2)) = C(U1 A Vi, U2/\V2)— C(U1, U2)C(V1, Vg).
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The limit distribution of the empirical copula process

and the pdm method

@ Theorem: If the copula C possesses continuous partial derivatives
01C,d,C on [0, 1]? then the empirical copula process converges
weakly:

Qp = \/E(Cn — C) ~ GC

o where Ge(uy, ) =
Be(ut, uz) — 01C(uy, U2)Be(ur, 1) — 92C(ut, U2)Be(1, U2)

e where B¢ is a centered Gaussian field with the following covariance
structure:

COV(Bc(U1 , U2), BC(V1 , V2)) = C(U1 AVq, U N\ V2) — C(U1 , U2)C(V1 , Vg).
@ The pdm method (Blcher&Dette (2010)):
e Let Zy,...,Z, be centered i.i.d. random variables; D°Z; = 1;

independent of Xi,...,Xp; [ /P(|Z1] > x)dx < ooc.
0

o Ci(u)y=1 Z;Zi]l{Fm (Xin) < ut, Fo(Xi2) < w2}
=
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The pdm method

@ Approximate the partlal derivatives:
81 C( ) Cn(u+h, V)2hCn(U h,v)

82C(u V) Cn(u, VJrh) Cn(UV h)

where h=n— 12 -0
@ Estimate of B.: Bn = /n(C;, — ZpCp)
@ Estimate of G: oMy, up) =
Bnltn, Up) — D1 C(us, Up) B, 1) — D C(us, U)Bn(1, Up)
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The pdm method

@ Approximate the partlal derivatives:
81 C( ) Cn(u+h, V)2hCn(U h,v)

82C(u V) Cn(u, VJrh) Cn(UV h)

where h=n— 12 -0
@ Estimate of B.: Bn = /n(C;, — ZpCp)
@ Estimate of G: oMy, up) =
Bnl(us, Up) — 01 C(us, Up)Bn(tn, 1) — D, Clus, tp)B(1, )
@ Theorem: Using the foregoing notations
(an, ™) ~ (G, G)in - 1°([0,1]?)2
where G, is an independent copy of G¢.
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The pdm method

@ Approximate the partlal derivatives:
81 C( ) Cn(u+h, V)2hCn(U h,v)

82C(u V) Cn(u, VJrh) Cn(UV h)

where h=n— 1/ -0
@ Estimate of B.: Bn = /n(C;, — ZpCp)
@ Estimate of G¢: oMUy, Up) =
Bnl(us, Up) — 01 C(us, Up)Bn(tn, 1) — D, Clus, tp)B(1, )
@ Theorem: Using the foregoing notations
(an, ™) ~ (G, G)in - 1°([0,1]?)2
where G, is an independent copy of G¢.

Cramér-von Mises teststatistics:
© Ln= Jipqp a?(x)dx
d
o L™ = fioqje(af™™P(x)dx
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e Bootstrap methods for Goodness-of-fit tests

@ CvM tests based on Kendall’s process
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Kendall’s process

@ Kendall’s transform (K function):
K(0,t) = P(Cyo(F1(X1),...., F1(X1)) < 1)
advantage: one-dimensional

=1, . ,
@ For Archim. copulas  K(0,t) =t+ > (7?) [o(t)']£i(0, t)
i=1

where f;(0,t) = %¢;1(X) x=dg(t)
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Kendall’s process

@ Kendall’s transform (K function):
K(0,t) = P(Cyo(F1(X1),...., F1(X1)) < 1)
advantage: one-dimensional

=1, . ,
@ For Archim. copulas  K(0,t) =t+ > (7?) [o(t)']£i(0, t)
i=1

where f;(0,t) = %¢51(X) x=dg(t)

@ Kendall’'s process: rn(t) = v/n(K(0n, t) — Kn(t))
where Kj(t): empirical version of K (6, t)
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Kendall’s process

@ Kendall’s transform (K function):
K(0,t) = P(Cyo(F1(X1),...., F1(X1)) < 1)
advantage: one-dimensional

-1, . ,
@ For Archim. copulas ~ K(0,t) =t + (7,1) [o(t)']£i(0, t)

d -1
where fi(0,t) = S50, (X) D
@ Kendall’'s process: rn(t) = v/n(K(0n, t) — Kn(t))
where Kj(t): empirical version of K (6, t)
@ Cramér von Mises statistics:
Sn—fo kn(t))2®(t)dt

Focused Regions d(1)

Global 1

Upper Tail 1—K(0n,t)
Lower Tail K(6n, t)
Lower and Upper Tail | K(0,,t)(1 — K(0p, t))
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Analysis of stock index data

2 stock index daily maxima for 9 years (2002-2011):
NASDAQ Composite & Dow Jones Industrial Average

@ Method: copula fitting and goodness-of-fit testing
@ Analysed copulas: Gumbel, Clayton
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Analysis of stock index data

2 stock index daily maxima for 9 years (2002-2011):
NASDAQ Composite & Dow Jones Industrial Average

@ Method: copula fitting and goodness-of-fit testing

@ Analysed copulas: Gumbel, Clayton

@ Tests:
@ Cramér-von Mises teststatistics based on Kendall’s process
@ Cramér-von Mises teststatistics based on empirical copula process
estimated with parametric bootstrap
© Cramér-von Mises teststatistics based on empirical copula process
estimated using «,
© Testing correlation structure with multivariate Bartlett test
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Stock index data and fitted copulas

DJ and NASDAQ Empirical copula
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CvM test based on Kendall's process

Nasdaq-DJIA 2005-2010

K functions
comparison of the p-values for different statistics
o
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CvM test based on empirical copula process

estimated with parametric bootstrap and with «,

Gumbel copula fitting (rolling window) Clayton copula fitting (rolling window)
4 parameter 4 parameter
* p-values (bootsirap) * p-values (bootstrap)
© p-values (alpha_n) . p-values (alpha_n)
s, 2
a * -
a . a 4 E & i . a a
oA 4 a . A
~
@
o= - . s . ® - @ o-w " ] ® ] ® ® ® ®
T T T T T T T T T T
2002 2004 2006 2008 2010 2002 2004 2008 2008 2010
Years Years
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Testing correlation structure — multivariate Bartlett test

@ Multivariate Bartlett test:  Hp: X, =X

@ Critical values and teststatistics with simulation
@ Analysed pairs: (0.1,0.11); (0.1,0.9); (0.89,0.9)
@ Results (Gumbel copula):
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Testing correlation structure — multivariate Bartlett test

@ Multivariate Bartlett test:  Hp: X, =X

@ Critical values and teststatistics with simulation
@ Analysed pairs: (0.1,0.11); (0.1,0.9); (0.89,0.9)
@ Results (Gumbel copula):

Years (0.1,0.11) [ (0.1,0.9) | (0.89,0.9)
2010-2011 | 0.1263 | 0.0421 | 0.1003
2009-2011 | 0.0021 | 0.0000 | 0.0040
2008-2011 | 0.0001 | 0.0000 | 0.0026
2007-2011 | 0.0017 | 0.0009 | 0.0011
2006-2011 | 0.0091 | 0.0057 | 0.0153
2005-2011 | 0.0007 | 0.0002 | 0.0009
2004-2011 | 0.0001 | 0.0000 | 0.0000
2003-2011 | 0.0000 | 0.0000 | 0.0000
2002-2011 | 0.0000 | 0.0000 | 0.0000
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Final remarks

@ Conclusions
o K process based tests are the fastest but not the best
e The null hypotesis was not rejected between 2010 and 2011
@ Future work
o CvM test based on empirical copula process estimated with pdm
method
o Working with Gaussian and t-copulas (problem: estimating the
partial derivatives)

Laszl6 Varga (ELTE) Bootstrap methods for copulas, with applicatio ASMDA 2011 21/24
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o K process based tests are the fastest but not the best
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o Working with Gaussian and t-copulas (problem: estimating the
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